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Abstract
A solid is called ‘supersolid’ if it exhibits superfluid properties. Supersolidity is a paradoxical
phenomenon whose understanding has become a major challenge since 2004, when Kim and
Chan first observed what could be mass superflow through solid helium 4. In this review, we
describe how successive experiments indicated that what was observed in helium 4 was not
intrinsic properties of the crystalline state as originally proposed 35 years before. Disorder
coming from how the solid is grown (dislocations, grain boundaries and other interfaces, liquid
or glassy regions, impurities. . .) was shown to play an essential role. However, one does not
know yet which type of disorder is involved or by which mechanism it leads to the observed
properties. Furthermore, all the experimental features probably cannot be explained by a
common mechanism. Recent measurements of the shear modulus of helium 4 crystals could
even be explained without the need of any superfluidity. In fact, many theoretical predictions
need to be checked experimentally, so the whole issue is far from understood. Even some
crucial experiments would need to be repeated more systematically. The present review of the
experimental observations and theoretical scenarios raises a series of questions which call for
answers.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

For a physical system, to be solid and superfluid at the same
time, that is ‘supersolid’, is obviously paradoxical. The usual
definition of a solid is a state with non-zero elastic shear
modulus. One should probably specify ‘at low frequency and
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small stress’. The non-zero shear modulus is a consequence
of the localization of atoms, which breaks the translation
symmetry of the system. On the contrary, in a superfluid,
atoms are indistinguishable and delocalized, and mass can
flow without resistance; this is the case for liquid helium 4
below around 2 K [1, 2]. Still, it was proposed in 1969–
70 that a quantum crystal with large quantum fluctuations of
atoms around the lattice sites could be supersolid, in particular
if it contained delocalized vacancies in the zero temperature
limit [3–7].

Crystals are examples of solids where the translation
symmetry is spontaneously broken by the appearance, at the
crystallization point, of mass density waves with well defined
wavevectors (the Bragg vectors). The possible existence
of supersolidity leads to the question: is it possible that a
system is periodic in space without being localized? For
this, long range atom exchange is necessary. But is this
exchange possible in perfect crystals or does it need the
presence of vacancies or various kinds of defects? This is a
fundamental problem which is at the heart of the whole issue
of supersolidity.

There were early unsuccessful searches for a supersolid
state [8, 9]. The first sign of a possible transition came
from the experiments done by Kim and Chan in 2004. They
discovered surprising anomalies in the behaviour of a torsional
oscillator (TO) filled with solid helium1 and presented them
as possible experimental evidence for the supersolidity of
solid helium [10, 11]. Since 2004, supersolidity has become
controversial and fascinating. Despite the efforts of many
experimental and theoretical groups, the whole issue is still
unsettled at the end of the year 2007. In his 2007 article,
Prokof’ev [12] has reviewed most of the theoretical aspects
of supersolidity. In the present review, we have put more
emphasis on experiments and tried to discriminate between
various ideas and models. As we shall see, the involved
community is far from having reached a general consensus on
the interpretation of all observations, but it should be useful to
summarize what has been understood and what should now be
considered. This is the goal of this review, which is organized
as follows.

In section 2, we describe the first TO experiments. In
section 3, we consider the possible explanation in terms of
superfluid vacancies. In section 4, we consider disorder in
solid helium samples: dislocations, grain boundaries, glassy
or liquid regions in inhomogeneous samples and helium 3
impurities. In section 5, we review a number of measurements
of mechanical properties and their possible interpretations. We
present in section 6 a few additional remarks on quantum gases,
hysteresis, critical velocities, neutron and x-ray scattering
measurements, pressure dependence, hydrogen, etc. Finally, in
section 7, we draw a few conclusions and summarize questions
which call for answers.

1 From now on in this review, helium means helium 4 except when there is
a possible ambiguity because, for example, we have to consider the effect of
helium 3 impurities.

Figure 1. The TO used by Kim and Chan. The torsion rod is twisted
by the sample cell oscillation, driven and detected by the side
electrodes.

2. First experimental observations

2.1. Principle of the torsional oscillator experiment

The idea to use the change in resonance frequency of a
TO as a measure of the superfluid fraction goes back to
Andronikashvili [13], who used it with bulk liquid helium 4.
The technique was later refined by using a TO with a
high quality factor to measure the superfluid fraction in
helium 3 [14, 15]. Since then, it has been widely used, in
particular to study helium films or liquid helium confined in
porous materials.

Let us first describe the set-up which was used by Kim
and Chan [10] and is shown in figure 1. The torsion cell is a
box suspended by its fill line, which is a vertical hollow rod.
Two planar electrodes are attached on the sides of the torsion
cell. They are coupled capacitively to two other electrodes:
the detection electrode produces an ac voltage when the cell
oscillates, and, thanks to a lock-in amplifier, the drive electrode
keeps the oscillation in resonance. Because of the high quality
factor of the torsion cell (typically 106), the resonance period
τ (typically 1 ms) can be measured with high accuracy. As a
reference, τ is measured as a function of temperature for the
empty cell:

τ0 = 2π

√
I

G
(1)

where I is the inertia momentum of the torsion bob, and
G the torsion spring constant, determined by the rod shape
and material. When the cell is filled with helium at high
temperature, the added mass increases I and thus τ . In the
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Figure 2. (A) The period shift (left scale, filled symbols) and the
relative amplitude (right scale, open symbols) of the TO for different
maximum oscillation velocities (see legend) as measured by Kim and
Chan [10] in an annular cell at 51 bar. (B) The same measurements
with a blocked annular channel at 36 bar and with a velocity of
3 μm s−1 (open stars, relative amplitude; filled stars, period shift of
the filled cell; crosses, period shift of the empty cell). The period
shift is measured with respect to the extrapolation to T = 0 of the
empty cell (dotted line). When a barrier is placed across the helium
cell (B), the period shift is strongly reduced with respect to the
unblocked cell (A) and no attenuation peak can be seen.

case of liquid helium 4, as the cell is cooled down below a
critical temperature T0, where superfluidity appears, the mass
coupled to the box decreases, consequently I and the period τ .
Due to the existence of a critical velocity in the hydrodynamics
of superfluids, the observed change in inertia is largest in the
limit of small drive amplitude. This is called ‘non-classical
rotational inertia’ (NCRI). The relative change in the inertia
momentum is called the NCRI fraction (NCRIF) and it is
identified with the superfluid fraction:

NCRIF = ρs(T )

ρ
= I (T0) − I (T )

I (T0) − Iempty
(2)

where Iempty is the inertia momentum of the empty cell. For
bulk liquid helium, ρs(T )/ρ tends to unity at low temperature.

2.2. The experiment by Kim and Chan

Kim and Chan studied a TO whose box was an annular channel
filled with solid helium [10]. Figure 2(A) shows typical
measurements with a pressure P = 51 bar in the helium
cell. Below T0 � 200 mK, the resonance period τ (T ) starts
to depart from the curve expected by extrapolation of higher
temperature data: this was interpreted as the signature of
supersolidity. As the change is small, equation (2) can be
rewritten as

NCRIF = τ (T0) − τ (T )

τ (T0) − τempty
(3)

Figure 3. The non-classical rotational inertia fraction (NCRIF)
measured by Kim and Chan [10] as a function of temperature for
different maximum oscillation velocities (see the legend). This is in a
sample ending at 26 bar after growth at constant volume.

assuming a constant G. At low temperature, the NCRIF
reaches 1.3%, as if this amount of the helium mass decoupled
from the oscillating walls. Note that the high temperature
data for τ (T ) extrapolate to a value about 0.2% lower than
at T0, so that, in equation (3), the extrapolated value of τ (T )

should be used instead of τ (T0) when the maximum NCRIF
is small. In addition, figure 2(A) shows that the NCRIF
depends on the maximum velocity vmax during the oscillation
(vmax is computed at the mean radius of the channel and
in the low temperature limit): at low vmax, the curves are
identical, but when vmax becomes larger than approximately
10 μm s−1 the NCRIF decreases and finally tends to vanish.
This is more clearly seen when the NCRIF calculated from
equation (3) is plotted versus temperature, as shown in figure 3.
Finally, figure 2(A) shows a broad minimum in the oscillation
amplitude: since, for all curves, the cell was excited with a
constant ac voltage, this indicates the existence of a maximum
in dissipation. This was also seen in TO studies of thin helium
films on a planar surface [16–18]. These observations have
been presented as further evidence that a fraction ρs(T )/ρ of
solid helium 4, equal to the NCRIF, becomes superfluid at low
temperature, with a small critical velocity of order 10 μm s−1.

In a first control experiment with high-purity (99.999%)
solid helium 3, which is a fermion, no NCRIF was found
by Kim and Chan. A second control experiment involved
helium 4 in a cell where a barrier was placed across the
annular channel in order to block circular flow. Even in a
blocked channel, a superfluid should exhibit non-zero NCRIF
because some irrotational flow can take place, but it should be
strongly reduced if the thickness of the annulus is very small
compared to its diameter [19]. Unfortunately, the dimensions
of Kim’s blocked cell were different from those of the original,
unblocked, one: the width was 15 mm instead of 10 and the
thickness was 1.1 mm instead of 0.63 mm (in fact, the actual
value is yet different2). An extrapolation led Kim and Chan
to estimate that an unblocked cell with the same size as the
blocked one should show a period shift of 95 ns. Since they

2 In a more recent article [20], Clark and Chan explained that the thickness of
the original cell used by Kim and Chan was 0.95 mm, not 0.63 mm.
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observed 1.4 ns only (figure 2(B)), they considered that the
effect of the barrier was to reduce the period shift to 1.5%
of its value for the unblocked cell. A calculation with the
experimental geometry of the blocked cell led Mueller [21]
to 0.8%, a value which was estimated by Kim and Chan [10]
as the ‘same order’ as their experimental one. In the end, it
seems to us that the measured value (1.5% if the extrapolation
is correct) is significantly larger than the calculated value
(0.8%) for the reduction of the NCRIF due to the barrier.
Since this experiment is a crucial test of macroscopic quantum
coherence in the sample, we hope that this experiment is
repeated carefully with blocked and unblocked cells having the
same dimensions, and also with more than one thickness.

In their very first series of experiments [11], Kim and Chan
studied the NCRIF of solid helium in a cell filled with a porous
glass (Vycor). They observed the same features as described
above, as if mass could flow in the glass pores despite their
very small diameter (typically 7 nm [22]). This is also observed
when a Vycor sample filled with liquid helium 4 is cooled
through its superfluid transition temperature [23], although the
critical velocity is much larger than for the solid. In the first
supersolid experiment with Vycor, adding helium 3 was found
to decrease the NCRIF (it vanishes for helium 3 concentrations
above 0.1%), to broaden the transition and to increase its onset
temperature T0.

Subsequent experiments have confirmed these observa-
tions. Solid helium confined in porous gold with characteristic
pore diameter 490 nm exhibits a similar behaviour [24]. For
bulk solid helium, the pressure variation of the zero tempera-
ture NCRIF was later measured with less scatter than in the first
experiment, and a maximum was found around 55 bar [25] (see
figure 4). Eventually, the effect of adding helium 3 impurities
was confirmed in bulk solid helium 4 samples. Starting from
ultra-pure helium 4 with less than 2 ppb 3He, Kim et al found
that T0 increases monotonically with helium 3 concentration
and that the supersolid fraction has a broad maximum around
0.2 ppm [26, 27].

3. Superfluid vacancies?

We now turn to the early theories of supersolidity and to their
analysis in more recent theoretical works.

3.1. Early theories

Given these observations, Kim and Chan proposed that solid
helium 4 is ‘supersolid’. Such a possibility had been
considered by Reatto [3], Andreev and Lifshitz [4], Chester [5],
Leggett [6], Imry and Schwartz [7] and a few other theorists
about 35 years earlier. The argument by Andreev and Lifshitz
was simple. Suppose that one creates a classical vacancy
by removing one atom on one site of a crystal lattice: there
is a cost for this which is the activation energy E0 of this
classical—i.e. localized—vacancy. Suppose now that, by
quantum tunnelling, this vacancy can exchange its position
with a neighbouring atom. If the exchange frequency ν is
large enough, the vacancy becomes a quantum wave which
is delocalized in the whole lattice. Its energy lies inside a

Figure 4. The pressure variation of the NCRIF at low temperature, as
measured by Kim and Chan in 2004 (open squares [10]) and in 2006
(filled circles [25]). The solid line is a guide to the eye. Kim and
Chan labelled the left scale ρS0/ρ because, in their model, the
NCRIF is the ratio of the superfluid density in the T = 0 limit to the
total density ρ. In the 2006 configuration, improved growth
conditions reduce the scatter in the data and a non-monotonic
pressure variation shows up: the supersolid fraction increases up to
P � 55 bar before decreasing at higher pressure.

certain band whose width is proportional to ν. If ν is large
enough, the bottom of the band has a negative value, so that
the crystal is invaded by a finite density of vacancies which are
called ‘zero point vacancies’ because they should exist even at
T = 0. Moreover, in a crystal made of Bose particles such
as helium 4 atoms, these quantum vacancies are also Bose
particles; they should undergo a Bose–Einstein condensation
(BEC) at a certain critical temperature Tc and form a superfluid
inside the crystal. Since a vacancy moving in one direction
is equivalent to an atom moving in the opposite direction,
the superfluidity of zero point vacancies would allow mass
transport through the lattice without dissipation. The final
situation would be the paradoxical coexistence of order in
real space (the crystalline order) and in momentum space (the
Bose condensate of vacancies). Andreev and Lifshitz have
considered the possible propagation of hydrodynamic modes
in solid helium 4 if supersolidity were to occur and their work
was later extended by Saslow and by Liu [28, 29].

This possibility looked contradictory to the work of
Penrose and Onsager, who had introduced the formalism of
the density matrix to generalize BEC to interacting systems
like liquid helium. The existence of a condensate appeared as
‘off-diagonal long range order’ (ODLRO) in the one particle
density matrix. The physical meaning of ODLRO is that there
is a non-zero overlap between two wavefunctions describing
the whole system and differing by the exchange of two atoms
a distance r apart, even in the limit where r tends to infinity.
It implies phase coherence at macroscopic scale. In their 1956
article [30], Penrose and Onsager wrote a paragraph claiming
that ODLRO could not exist in crystals. As we shall see, this
fundamental issue is rather delicate.

It was noticed by Chester [5] that Penrose and Onsager
had used non-symmetrized wavefunctions to demonstrate their
result, so that their conclusion was questionable. A few years
later, Imry and Schwartz [7] explained that, in a crystal with
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one atom per site, the absence of ODLRO is not a question of
symmetrization but a question of wavefunction overlap. By
generalizing arguments by Matsuda and Tsuneto [31], Imry
and Schwartz showed that a large class of wavefunctions
describe quantum solids which do not exhibit ODLRO in
the absence of vacancies [7]. They also showed that some
lattice gas models show ODLRO in the absence of vacancies
but they are not solids in the usual sense because they
allow double occupation of sites. Imry and Schwartz finally
showed that, in the presence of vacancies, BEC could occur.
Leggett [6] predicted that, in the case of ODLRO, the crystal
should exhibit NCRI properties; this is a consequence of
phase coherence in the crystal. All known three-dimensional
superfluid systems do exhibit ODLRO and NCRI3. In view of
the above arguments, there remain at least two fundamental
questions to be answered.

(1) Is it a universal result that, without vacancies, crystals are
not superfluid?

(2) Are there vacancies in the ground state of solid helium,
in which case could their existence explain experimental
observations? In particular, is the 1% NCRIF observed
by Kim and Chan the consequence of a finite density of
vacancies in the ground state of helium crystals?

This double issue has been reviewed by Prokof’ev [12], but
it might be useful to come back to it as briefly as possible.
Prokof’ev et al [32–34, 12] define ‘commensurate’ crystals
as crystals where the number of atoms N is equal to the
number of lattice sites Ns. In contrast, crystals are called
‘incommensurate’ if N �= Ns. According to Prokof’ev
and Svistunov [32, 12], commensurate crystals are ‘nearly
always’ ‘insulating’, that is non-superfluid. The superfluidity
of a crystal requires the presence of vacancies or interstitials
which do not form bound pairs together. ‘Nearly always’
means the following: assume that, at a particular density or
pressure, a crystal is superfluid and commensurate because
the number Nvac of free vacancies equals the number of
free interstitials Nint; then, since there is no reason for the
energy of vacancies to keep equal to that of interstitials under
different density or pressure conditions, the crystal would be
incommensurate at neighbouring densities. In other words, the
probability that a commensurate crystal is superfluid should
be negligible. As for the possibility that the ground state
of helium crystals is incommensurate, they claim that it is
contradictory to various experimental measurements of the
activation energy for vacancies or interstitials, also to their
own calculations. They mainly consider vacancies because
the energy of interstitials is generally found to be larger than
that of vacancies (their calculations [34] at the melting pressure
Pm = 25 bar give Evac = 13 K and Eint = 23 K). They further
argue that the vacancy–vacancy interaction is attractive, so that
a finite density of vacancies at low temperature should lead
to their aggregation, that is to a liquid–solid phase separation.

3 In two dimensions, there can be superfluidity without ODLRO in the usual
sense since the off-diagonal terms in the density matrix decrease algebraically
to zero at long distance. As explained by Prokof’ev [12], if one takes an
integral definition of ODLRO, one recovers the equivalence with a non-zero
ODLRO in superfluid systems, even in two dimensions.

In a purely classical Monte Carlo simulation, Ma et al also
find that the vacancy–vacancy and the interstitial–interstitial
interactions are attractive so that they should aggregate and
phase separate [35]. However, Mahan and Shin [36] calculated
the interaction between two fixed vacancies within elasticity
theory. They found that it is indeed attractive in the basal plane
as found in the simulations by Boninsegni et al [34] but that it
is repulsive in other directions. Mahan and Shin further explain
that their calculation should be improved by taking the motion
of vacancies into account.

Anyhow, in 1969, Reatto [3] and Chester [5] had shown
that, if one describes a crystal with ‘Jastrow wavefunctions’,
BEC should occur. More recently, Galli, Rossi and Reatto [37]
have proposed that the ground state of a helium crystal is
commensurate and superfluid. Their conclusion is based
on a variational calculation using ‘shadow wavefunctions’
(SWFs). They claim that quantum fluctuations create vacancy–
interstitial pairs, which provide an exchange mechanism for
atoms.

As for Clark and Ceperley, they explain in the long
introduction of their article [38] that ‘it is not possible to state
a general theorem covering whether all quantum crystals must
or cannot have BEC’. They argue that, even when variational
calculations describe static properties of helium crystals with
great accuracy, which is the case for SWF, they may not
describe BEC, which is very sensitive to the range of the
interatomic correlations. This is why they use path integral
Monte Carlo (PIMC) simulations which are based on the Aziz
potential and, ‘in principle’, exact. The Aziz potential is
also known to accurately describe the He–He interaction [39].
According to Clark and Ceperley, variational calculations find
BEC as long as the interatomic correlations are short ranged
as in Galli’s work. Their MC calculation shows no ODLRO in
commensurate crystals, while an MC calculation using SWF,
‘being built from short range correlations, leads inevitably to
superfluidity’. Clark and Ceperley also criticize the use of
Jastrow wavefunctions because they do not correctly reproduce
the rms vibration of atoms around their lattice sites: the
Lindemann ratio γ = √〈u2〉/a (where u is the displacement
and a is the lattice parameter) has been measured [40] to be
0.26 at the melting pressure. This is much larger than in
classical systems, where γ � 0.14. Cazorla and Boronat [41]
use another type of MC calculation, where atoms interact with
each other through the Aziz potential, and with a periodic
external potential of adjustable height. In the absence of
vacancies, they find a non-zero superfluid fraction in a range of
potential heights which corresponds to a range of Lindemann
ratios that includes the experimental value; the superfluid
fraction then amounts to 8%. However, the Lindemann ratio
describes an average while what appears to be important for
superfluidity is the overlap of wavefunctions, which has to do
with the tails of the density profile of the atoms around their site
positions. In summary, in our opinion, our first question is still
a matter of controversy: there exist model systems which are
commensurate and show ODLRO, but it is not yet absolutely
clear if these models describe real crystals or only artificial—
perhaps exceptional—ones.

Let us now come to our second question. As already
mentioned above, Boninsegni et al [34] calculated activation
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energies with a path integral Monte Carlo method. For
vacancies they found Evac = 13 K, and for interstitials Eint =
23 K (both at the melting pressure Pm). With a similar method,
Ceperley and Bernu [42] had found Eint = 50 K for interstitials
but, according to a note in [34], they later acknowledged that
their value may need to be revised. With their variational
method using SWFs, Pederiva, Chauduri, Fantoni, Chester
and Reatto had found Evac = 15 K and Eint = 30 K at
Pm = 25 bar [43, 44]. This result is similar in magnitude
to Boninsegni’s, and also to an experimental determination
by Fraass et al [45], so that one could consider as well
established that vacancies have a large activation energy. As
a consequence, not only are there no zero point vacancies, but
at temperatures of a few hundred millikelvin the density of
thermally activated vacancies is negligible. For interstitials,
it would be even more strongly established. However, in
2006, Galli and Reatto [46] criticized the results of their
own group and claimed that, due to finite size effects, ‘the
question whether the ground state of bulk solid helium 4 is
commensurate or incommensurate is still undecided’, but they
‘noticed that the ground state is incommensurate for the best
variational wavefunction’. To this objection, Boninsegni et al
[34] replied that their calculation of either Evac or Eint did not
show any dependence on the system size. As we shall see now,
the theoretical controversy on the value of Evac has progressed
thanks to arguments put forward by Anderson, Brinkman and
Huse [47], to counter-arguments to the latter, and to new
experimental measurements.

3.2. Search for zero point vacancies

In 2005, Anderson, Brinkman and Huse [47] proposed that,
in fact, helium crystals contained zero point vacancies. Their
argument was based on experimental observations and twofold.
They first considered the temperature variation of the lattice
spacing �a/a(T ) which had been measured by Fraass et al
[45]. If vacancies are thermally activated, both their density
and �a/a should vary as exp (−Evac/kBT ). With this
assumption, Fraass et al had concluded that Evac = 8 K at the
melting pressure Pm, and that it increased with pressure [45].
This is the same order of magnitude as the recent calculations
mentioned above [43, 44, 34]. But Anderson et al argued
that, in the presence of zero point vacancies, that is if Evac =
0, �a/a should vary as T 4. They further showed that the
measurements by Fraass et al, which were limited to the region
above 0.8 K, could be fitted equally well with an exponential
and with a T 4 law, so that, according to them, there could
exist some density of zero point vacancies. However, in
2007, Blackburn et al [48] measured �a/a(T ) in the range
0.14–0.8 K. They found it constant within 10−4. Although
unfortunately their measurements could not be compared with
those by Fraass et al because their respective temperature
domains did not overlap, Blackburn’s results are compatible
with thermally activated vacancies but not with the T 4 law
proposed by Anderson et al for zero point vacancies. If
possible, it would be interesting to extend these neutron studies
to even lower temperatures, since the recent experiments by
Clark, Lin et al [49, 50] indicate a transition temperature
around 75 mK (see sections 4.5 and 4.6).

The second argument by Anderson et al concerned the
temperature variation of the specific heat C(T ). They argued
that, if vacancies were thermally activated, the specific heat
should have an exponential correction to the usual T 3 phonon
term. But, instead, Gardner et al [51] had found a T 7

correction. Any phonon term of higher order should scale
as the ratio (T/�D) to some power, where �D is the Debye
temperature. According to Anderson et al, this ratio should
be small because �D is larger than 26 K [51]. Furthermore,
they predicted a T 7 correction in the presence of zero point
vacancies. However, Maris [52] calculated the higher order
phonon terms due to the dispersion of phonons. He found that
there is a large coefficient in front of the powers of (T/�D) and
that it is possible to fit the T 7 term with reasonable values of
the phonon dispersion relation. In summary, the suggestions
by Anderson et al that helium crystals contain zero point
vacancies have certainly triggered an interesting debate but it
is not proven that they describe the reality of these crystals.

In the end, one has progressively arrived at the conclusion
that, if the anomalies observed in TO experiments are related
to the superfluidity of some mass inside helium crystals,
the mechanism cannot be as simple as originally proposed
in 1969–70. In fact, Andreev’s mechanism should lead to
the existence of dc superflow in single crystals and, despite
several attempts [8], this has never been observed. A more
recent search for dc superflow was made by Day et al in
two successive experiments [53, 54]. They first studied solid
helium confined in a porous glass (Vycor with 7 nm diameter
channels). As the pressure was increased outside the Vycor,
mass flow into the Vycor could only be seen at a temperature
high enough for thermally activated diffusion to take place. No
indication of superflow was found at low temperature. In a
subsequent experiment, they studied flow through an array of
25 μm channels with the same negative answer [54]. The only
experiment where a dc superflow was observed is the later
one by Sasaki et al [55]. We will see below that it required
the presence of grain boundaries. In fact, several experiments
pointed out the importance of disorder at the same time it was
invoked by theorists [32, 38, 12, 56].

4. Disorder

4.1. Sample preparation

After the discovery by Kim and Chan of the NCRI in solid
helium, several groups tried to reproduce their experiment.
These other groups also found NCRI [57–60], but with some
scatter between samples, as already noticed by Kim and Chan.
This prompted the study of annealing effects. Annealing is
performed by warming up the sample close to the melting
point for some time (typically 10 h), and cooling down slowly
afterwards. Annealing is a well known method to improve
the quality of crystals. Rittner and Reppy [57] annealed
their samples for 13 h between 1.4 and 1.5 K, the melting
temperature at 26 bar. After annealing, the magnitude of the
NCRIF decreased below the noise level of their detection (see
figure 5). Although Penzev et al reported the observation
of a 10% increase of the NCRI after annealing [58], and
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Figure 5. Rittner and Reppy [57] have found that annealing the
helium sample reduces the period shift of their torsional oscillator
below the noise level in their experiment. The first run (upper panel,
upward triangles) shows a 20 ns period shift. Upon partial annealing,
the period shift is decreased (lower panel, downward triangles). After
the solid is melted and refrozen (upper panel, full circles), a signal
similar to that in the first run is recovered. Finally, a full annealing of
the sample (lower panel, stars) reduces the NCRIF below the
detection level.

Kondo et al found no effect of annealing [59], it is now
generally accepted that annealing reduces the disorder and
consequently the magnitude of the NCRI, especially since the
careful analysis of annealing by Rittner and Reppy [61] and
by Clark, West and Chan (see section 4.5) [49]. Note that
differences between experiments may come from each cell
having pinning centres of variable strength. Furthermore, an
increase of the NCRI could be the consequence of the plug
moving along the fill line during the annealing, a possibility
which was not investigated in all experiments.

The link of supersolidity to disorder was further supported
by Rittner and Reppy, who studied rapidly cooled samples.
When their solid helium sample was quickly grown by
quenching the cell down in temperature, they observed a
larger NCRIF [57]. In a later series of experiments with
thinner sample space in the torsion bob, Rittner and Reppy
obtained an NCRIF as large as 20% [62]. By reviewing other
TO experiments [25, 58–60], they further noticed that the
NCRIF increased monotonically with the surface to volume
ratio of the cell (see figure 6). In fact, this ratio is about
the inverse thickness of the sample because the empirical law
applies to cells which are all cylindrical. Experimental data
corresponding to porous glass [11] or to porous gold [24] lie
far away from the others on this graph, indicating a different
mechanism. Rittner and Reppy proposed that, as the sample
thickness decreased, solidification could proceed more quickly
and produce more defects (dislocations, grain boundaries. . .),
which could also be more efficiently pinned to walls.

This series of experiments pointed out the importance
of disorder resulting from the sample preparation. In TO
experiments where the sample space is suspended by a small
rod, it has generally a poor thermal contact with the lowest
temperature part of the refrigerator, and samples are usually

Figure 6. The variation of the NCRIF, i.e. the ratio of the superfluid
density ρs in the T = 0 limit to the total density ρ, as a function of
the surface to volume ratio, according to Rittner and Reppy [62]. In
addition to their own measurements (solid circles and downward
filled triangles), they have included the results from Chan’s [10]
(open circles, open triangle, and open square) and Shirahama’s
groups [59] (filled upward triangle). Measurements in porous
materials (Vycor and porous glass) are not included because they lie
far outside this graph.

grown at constant volume. For this, the cell is first filled at
high temperature and at some pressure above 50 bar before
it is cooled down. Since the cell is not the coldest point, a
solid plug forms somewhere along the fill line, presumably
near the 1 K pot, which is usually cooled down first, before
the 3He–4He mixture is circulated in the dilution unit and
millikelvin temperatures can be reached. This plug isolates a
certain mass in the cell, which is then cooled down at constant
volume V (if the plug does not move, of course). When
the cell temperature reaches the solidification line Pm(T )

in the phase diagram, crystallization starts and, as T keeps
decreasing, the pressure in the cell also decreases along the
melting line Pm(T ). As a result, the pressure is not constant
during crystallization, so that, although crystallization takes
place in a time of order one hour, the resulting solid is
usually polycrystalline. This was verified by Sasaki et al,
who could observe crystals grown at constant V in their
optical cryostat [63] (see figure 7). Sasaki et al did not see
any significant difference in the amount of disorder when the
solidification proceeded through the bcc–hcp transition. When
crystallization was fast from the normal liquid phase, Sasaki
et al found dendritic growth, as had been already observed by
the groups of Hallock [64] and Okuda [65]. In order to obtain
single crystals one needs to grow the solid phase by adding
mass at constant pressure and temperature through an open fill
line. This can be done easily from the superfluid liquid if the
cell is the coldest point along the helium path [66], or from the
normal liquid with appropriate temperature gradients.

4.2. Grain boundaries

In 2006, Sasaki et al [55] studied dc mass flow through a
macroscopic solid sample inside a glass test tube (1 cm inner
diameter). The tube was placed upside down in a helium cell,
it was vertical and closed at the top. Solid helium was grown
from the superfluid at a temperature of 1.3 K, and a sample was
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Figure 7. In their optical cryostat, Sasaki et al [70, 63] could grow
solid helium samples at constant volume in a time of order one hour
as usually done in TO experiments. This photograph shows that the
sample is polycrystalline. The window is 11 mm wide. The grain
boundaries are revealed by lowering the pressure to the melting
pressure Pm = 25.3 bar so that the contacts of grain boundaries with
the cell windows are invaded by liquid helium (see section 4.2).

prepared with the liquid–solid interface higher by 1 cm inside
the tube than outside. Inside such a cell, where the temperature
is highly homogeneous, gravity is relevant so that the solid
occupies the bottom of the cell, under the liquid, which is less
dense. Liquid–solid interface levels can change by melting in
one place and crystallizing in another place. Now, since the
solid density is 10% larger than the liquid one, the solid could
melt inside the tube only if some mass could escape. Since the
top of the tube was closed, mass had to flow through the solid.

Several samples had no apparent disorder. In particular,
their interface with the liquid phase showed no grooves,
indicating the absence of grain boundaries. For such samples,
which were probably single crystals, no relaxation of the
interface took place within 50 μm in 4 h. This result implied
that, in these samples, the product (ρs/ρC)vc had to be less
than 3×10−4 μm s−1 (ρs and ρC are respectively the supersolid
density and the total solid density). This result is 300 times less
than expected from the values obtained in the TO experiments
(ρs/ρC � 0.01 and vc � 10 μm s−1). It shows that
there is no measurable density of mobile vacancies in single
crystals. Either helium single crystals are not supersolid or
the mechanism for supersolidity is not as simple as originally
proposed by Andreev and Lifshitz [4]. One should also
notice that Sasaki’s observations were made at the solid–liquid
equilibrium where crystal properties could be different from
the ones at higher pressure. For example, it is possible that
defects anneal out more efficiently at the melting pressure.
This result is also at odds with the hypothesis by Khairallah and
Ceperley [67] and Dash and Wetlaufer [56] that a superfluid
film exists at the interface between glass walls and solid
helium. Of course, the experiment gives only an upper bound
for the mass flow, so that this hypothesis is not totally ruled out,
but it was also found to be contradictory to their own results

by Day and Beamish, who searched for dc mass flow along
small capillaries [54] (in their previous experiment [53], they
found no dc mass flow through Vycor, but in that particular
case one could object that mass flow required a deformation of
the crystal lattice, not only a flow though a fixed lattice, so that
the results were not as conclusive as in their later experiment).

Sasaki et al found a different behaviour with polycrys-
talline samples [55]. Fast growth of the solid led to the forma-
tion of grain boundaries (GBs), whose presence was revealed
by the existence of grooves at the solid–liquid interface. It is
well known in materials science [68] that these grooves result
from the mechanical equilibrium between the GB surface ten-
sion σGB and the liquid–solid interfacial tension σLS. After
growth, some GBs moved away and some remained, presum-
ably pinned to walls. In three samples with GBs, mass could
flow and the interface relaxed [55] inside the glass tube. This
relaxation was not exponential as it would be for a classical
system. On the contrary, it took place at a constant velocity,
as expected for a superflow at its critical velocity, which is in-
dependent of the applied force (here a height difference). At
first sight, Sasaki’s results looked like evidence for the exis-
tence of superflow along GBs connecting the liquid inside the
tube to the one outside the tube. If true, Sasaki’s measure-
ment with only one apparent GB could be understood with a
critical velocity along the GB of order 1 m s−1. This value is
similar to what had been previously found for liquid films of
atomic thickness [69]. Note that, in the experiments by Day
et al [53, 54], the absence of superflow could be due to the ab-
sence of connection between GBs along very thin tubes. The
same absence of connection probably explains why Sasaki et al
found that mass did not flow along the capillary (0.6 mm in di-
ameter) connecting their pressure gauge to their experimental
cell [70].

GBs have been predicted to be superfluid by Burovski
et al in the frame of a general model [71]. Pollet et al made
a more precise calculation adapted to the particular case of
helium [72]. They found that superfluidity should occur in
GBs at temperatures of about 0.5 K, except for special relative
orientations of the grains (see figure 8). In their experimental
study, Sasaki et al [55] had found superflow at 1.13 K and it
might exist at even larger temperature. They proposed that,
perhaps, GBs were thick enough on the melting curve for their
superfluid transition temperature to be close to that of bulk
liquid helium. However, a later experiment by Sasaki et al [73]
led to another possible interpretation of their flow experiment,
as we shall see now.

Sasaki et al studied the boundary between two stable
grains, and measured the dihedral angle 2θ of the groove at
the top of the GB (see figure 9). The GB energy can be
deduced from the relation σGB = 2σLS cos θ , where σLS is
the known energy of the liquid–solid interface [66]. They
found θ around 13◦ and strictly positive, meaning that the
thickness of GBs is not macroscopic (even at the liquid–
solid equilibrium, the GBs are not completely wetted by
the liquid phase). They also found that the line of contact
of GBs with solid walls is in reality a liquid channel [73]
(see figure 10). This channel has a triangular cross-section,
which is stable if (θ + θc) < π/2, where θc is the
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Figure 8. Pollet et al [72] have simulated a GB between two crystals
with different orientations and a pyramidal shape, in equilibrium
with liquid regions on each side (upper panel). The density of black
dots (lower panel) indicates the local superfluid density: it is found to
be non-zero in the liquid of course, but also inside the GB.

contact angle of the liquid–solid interface with the wall (see
figure 10). The channel width w is inversely proportional to
the depth z below the flat part of the liquid–solid interface,
as can be understood with a simple capillary model [73].
Typically, w = 20 μm at z = 1 cm. Sasaki et al
finally predicted that, except perhaps in the presence of
inhomogeneous stresses, these channels should be of atomic
size at about 35 bar (Pm + 10 bar), and vanish above this
pressure.

This suggests another interpretation of the test tube
experiment: mass could flow along the liquid channels where
GBs meet the glass walls, not necessarily along the GBs
themselves. If true, it implies a critical velocity of order
3 mm s−1 along the channels, a value which is comparable to
what has been found in capillaries [74]. In order to decide what
is the right interpretation and if the inside of the GBs is really
superfluid or not, the ENS group needs to build a new version
of the tube experiment. Note that, since 2θ < 60◦, there should

Figure 9. A GB makes a groove when emerging at the liquid–solid
interface. From the groove dihedral angle 2θ and the value of the
liquid–solid interfacial energy σLS, Sasaki et al [73] obtained the GB
energy σGB = 2σLS cos θ . This photograph also shows that the
contact lines between the GB and each glass window of the cell are
liquid channels whose width is a few tens of micrometres, depending
on the depth below the liquid–solid interface on top.

be similar liquid channels inside polycrystalline samples at all
GB crossings [63].

4.3. Glassy or liquid regions

As mentioned above, rapidly quenched samples show large
NCRIF [57]. In a particularly thin sample cell, it has been
found that helium solidifies very fast and the NCRIF reaches
20% [62]. After annealing such samples with high NCRIF,
Rittner and Reppy found that the pressure in the cell decreased
by several bars, something which had also been noticed
in the early experiments by Fraass et al [45]. This is a
strong indication that quenched samples are inhomogeneous in
density. They must contain regions with a low density which
can crystallize during the later annealing so that the pressure,
which is measured on one side of the cell, relaxes down. In
reality, this ‘pressure’ is the normal component of a local stress
tensor, which does not have to be isotropic or homogeneous
in space. Of course, this interpretation supposes again that,
during the annealing, the plug which blocks the fill line of the
cell does not move. The inhomogeneity in density is supported
by the measurements of Grigor’ev et al [75].

They cooled down solid helium samples which had first
been quickly grown at constant volume. They measured the
temperature variation of the sample pressure, in reality a local
stress component again. Grigor’ev et al measured what can
be called a solid isochore PV(T ). As in Rittner’s experiment,
they observed a decrease in pressure after annealing as if part
of the sample had recrystallized. Furthermore, they found that
PV(T ) varied as AT 4 + BT 2. The T 4 term was expected, since
there must be a contribution from phonons. The T 2 term could
be consistent with glassy regions whose entropy should be
linear in T , and it disappeared after annealing. Liquid regions
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(a) (b)

Figure 10. (a) Three-dimensional view of the contact between a grain boundary (dash–dotted line) and a wall. The hatched area shows the
contact of the wall with the solid. (b) Horizontal cross-section of the liquid channel near the wall.

could also exist if the stress is highly inhomogeneous, not
only because the effective pressure could be low in particular
regions of the sample. This is because, in a solid, non-
hydrostatic stresses add elastic terms in the energy, so that the
equilibrium with the liquid phase is displaced towards higher
pressure. However, in order to lead to a T 2 term in the isochore,
these liquid regions would need to be one dimensional. Indeed,
consider a d-dimensional object whose density is δd , meaning
that in a volume V there is a length, surface, or volume δd V
of such objects, for d = 1, 2 or 3, respectively. The phonon
gas in this object gives a contribution to the pressure which
can be estimated from Fph, the phonon contribution to the free
energy:

P(T ) − P(T = 0) = −
(

∂ Fph

∂V

)
T

= − Fph

V

= δd kBT
∫ ωc

0
dω n(ω) ln

[
1 − exp

(
− h̄ω

kBT

)]
(4)

where ωc is a cut-off frequency corresponding to a wavelength
of the order of the interatomic distance, and n(ω) is the
density of states of the d-dimensional phonon gas. At low
temperature (T � h̄ωc/kB), this leads to P(T ) − P(T =
0) ∝ T d+1.

Grigor’ev et al claimed that the magnitude of their T 2

term was consistent with 5% of their sample being glassy solid
helium. Could this explain the TO results? It is possible that, in
Rittner’s samples, which were quenched even faster than those
of Grigor’ev, there is more than 5% glassy regions and this
would need to be checked. Boninsegni et al have simulated
a helium glass and found that it should have a transition to
a superfluid state which they called a ‘superglass’ [33] (see
figure 11). One should also notice that a grain boundary with
a large orientation difference between the two adjacent grains
can be viewed as a two-dimensional helium glass. According
to Pollet et al it should be about three atomic layers thick, a
result which is consistent with Sasaki’s measurements since
GB grooves have a non-zero dihedral angle. One interesting
question is whether the glassy regions in Rittner’s experiment
would need to be connected in order to provide a macroscopic
phase coherence in the whole sample. They could be in
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Figure 11. Boninsegni et al [33] have calculated the pair correlation
function g(r) in hcp helium crystals and in a glass with the same
density (upper panel); they have also calculated the off-diagonal term
n(r) in the superfluid state of the glass compared to the hcp crystal at
the same temperature and density (lower panel). The superglass state
exhibits ODLRO: the off-diagonal term tends to a non-zero constant
at large distance, while in the crystalline state it tends to zero
exponentially.

contact with each other or be connected by grain boundaries.
Many theories rely on the hypothesis that there is indeed a
macroscopic phase coherence in the sample. As mentioned
in section 2, the experimental check of phase coherence by
Kim and Chan needs to be repeated, especially in thin samples,
where the reduction in the NCRIF should be drastic.
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Andreev further discussed the properties of supersolid
glasses in terms of two-level systems [76]. Whether these two
works are relevant to explain Rittner’s observations of very
large NCRIF is, in our opinion, an open question. It is also
possible that, for experiments in Vycor or in porous glass,
there is a large contribution from the disordered region at the
interface between walls and solid helium and, according to
Dash and Wetlaufer [56], and Khairallah and Ceperley [67],
this disordered region is superfluid at low T .

4.4. 3He impurities

Already in their first article [11] Kim and Chan noticed that the
presence of 3He impurities had a strong effect on the anomalies
observed in their TO experiments, even at concentrations of
order 10−6 or less. They checked this further [26, 27] and
found that T0 increases monotonically with 3He concentration,
while the NCRIF had a broad maximum around 0.2 ppm. This
high sensitivity was soon considered by Beamish [77] as a
strong indication that, whatever they are, the TO anomalies
had to do with defects such as dislocations and GBs, where
3He impurities were known to bind. On dislocations, Iwasa
had measured a binding energy of 0.6 K [78, 79] and Paalanen
had found 0.7 K [80]. At a temperature which should depend
both on 3He concentration and on dislocation line density,
the impurities should attach to dislocations where their local
density should become much larger than the average one in the
bulk. Once decorated with 3He atoms, the dislocations should
behave differently: their possible superfluidity (see section 4.5)
should change, as well as their mobility, consequently their
fluctuations. Since GBs can be considered as sets of
dislocations, 3He impurities should also bind to them and
change their properties. It is also possible that 3He impurities
bind to the crossing nodes or lines between dislocations or
GBs and consequently affect their connections. As we shall
see below, more measurements have been performed in the
respective groups of Beamish [81] and Chan [50]. They show
a sensitivity to 3He concentration down to the 1 ppb level.

4.5. Dislocations in single crystals

Given all the uncertainties in the structure of samples grown
at constant volume, Clark, West and Chan have made a new
series of measurements in samples grown at constant T and
P from the superfluid [49]. It is well known [66] that, when
grown slowly from the superfluid, by adding mass in the cell
which stays at the liquid–solid equilibrium pressure Pm(T ),
solid helium samples are usually single crystals.

By using ultra-pure samples (1 ppb 3He only), Clark
et al observed NCRIF in the range 0.03–0.3% with an onset
temperature T0 = 75 mK, lower than with samples of natural
isotopic purity (0.3 ppm), where T0 � 150 mK. According
to Clark et al, the transition in their samples is sharper and
agrees with a power law of the form A(1 − T/Tc)

0.67, as
expected for a superfluid transition (with Tc a true critical
temperature equal to 60 mK, while the onset temperature T0

would be related to finite frequency effects). Clark et al further
noticed that for crystals grown at constant volume a succession
of annealing cycles progressively moved the transition curve

down to the one corresponding to single crystals grown at
constant pressure.

Clark’s experiment first showed that, at least in such
samples, the NCRI could not be explained by the superfluidity
of GBs because their samples contained either no GBs at all or
very few. If one supposed that the superfluid fraction is due to
superflow along grain boundaries, the typical grain size would
need to be rather small: if, for simplicity, one considers grains
forming a cubic lattice of period l, the GB density is 3/ l; if
each GB has an effective superfluid thickness α, the grain size
l corresponding to a superfluid fraction ρs/ρ is

l = 3αρ

ρs
. (5)

For ρs/ρ = 0.1%, one finds a typical grain size l = 0.1–
1 μm if α is 0.1–1 interatomic distance a = 0.3 nm. This
is perhaps possible with polycrystalline samples grown from
the normal liquid, where Sasaki et al found grain sizes smaller
than 10 μm (see figure 7), but it is obviously not possible with
crystals grown slowly from the superfluid [66].

Clark et al compared their results to various models. They
considered the ‘vortex liquid’ proposed by Anderson [82].
As also proposed by Day and Beamish [81] (see section 5.2
below), helium 3 impurities could condense on dislocation
networks and pin both vortices and dislocations. These ideas
are further developed in the recent article by Kim et al [27].
The interplay of vortices, dislocations and impurities would
need to be included in a more complex model. In the crystals
studied by Clark et al, the dislocation density could vary
by several orders of magnitude from one sample to another
because of sensitivity to growth conditions. In addition to
growth conditions, it is possible that, after growth, when the
samples are cooled down at constant volume and no longer
at the liquid–solid equilibrium, non-hydrostatic stresses appear
and create more defects. Clark et al found that their NCRIF
was 0.3% in one cell but 0.03% in another cell although the two
cells were similar: about the same size and the same resonance
frequency, the main difference was in the rod material, which
was BeCu in one case and AgCu in the other case. The large
difference in NCRIF between the two cells shows once more
the importance of uncontrolled disorder in experiments, even
when crystals are grown with extreme care.

Clark et al [49] also compared their results with a
scenario based on the superfluidity of dislocation cores.
This superfluidity had been considered by Shevchenko [84]
and further developed by Toner [85]. The Monte Carlo
calculations by Boninsegni et al [83] show that the core
of screw dislocations (not edge dislocations) shows phase
coherence (see figure 12). As known for a one-dimensional
system, this coherence extends over a distance ξ which is
inversely proportional to temperature. As a consequence, if
there is a dislocation network with a typical distance L between
dislocations, and if ξ > L, the phase coherence extends over
the whole crystal.

Boninsegni et al argue that, for a given dislocation density
nd ∝ 1/L, the superfluid mass density ρs inside dislocations
should scale like Tc

2. The inside of screw dislocations is
found to be a true 1D supersolid: matter is periodically
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Figure 12. Boninsegni et al [83] have shown that the core of screw dislocations is superfluid. The left picture shows a transverse section of
such a screw dislocation, where the density of dots is proportional to the superfluid fraction. The right picture shows a longitudinal section. In
both pictures, one sees that the density inside the core follows the crystal periodicity.

distributed in space but also shows long range phase coherence.
However, Boninsegni’s model is not sufficient to explain
Clark’s observations for two reasons.

First, Clark et al have found that the NCRIF does not
vary proportionally to the square of the onset temperature T0.
Second, a very high dislocation density would be necessary to
explain the magnitude of the NCRIF. Even a 0.03% supersolid
fraction would need a very high nd if the only mechanism was
flow of mass along the dislocation cores. The argument is
similar to the one used to derive equation (5): if dislocations
form a cubic network of period l, and if each dislocation
contains the equivalent of one dense line of atoms with a
diameter a = 0.3 nm, the dislocation density is

nd = 3

l2
≈ ρs

ρa2
(6)

which gives 3×1011 cm−2(1 = 100a) for a supersolid fraction
of 0.03%. Such a density is perhaps not impossible but it looks
very high.

We finally wish to consider another model based on
dislocation properties, which has been proposed by Biroli and
Bouchaud [86]. They consider the transverse fluctuations of
dislocations, which had been ignored by Boninsegni et al, and
they propose that, below a temperature Tk, the free energy of
kink–antikink pairs on dislocations should become negative.
As a consequence, kinks and antikinks should proliferate so
that dislocations should become highly mobile and allow atom
exchange, which leads to the supersolidity of the whole crystal.
According to them, a critical temperature Tc of 100 mK would
be consistent with a much lower dislocation density than if
transverse fluctuations of dislocations had been neglected. In
this model, the increase in line density of dislocations as
T decreases should switch on a linear term in the specific
heat [87], which needs to be calculated and does not seem
consistent with the measurements by Lin et al [50] (see below).

4.6. Thermodynamic properties

Assuming that the NCRIF observed in TO experiments
corresponds to a real phase transition, it should also be seen on
thermodynamic properties. Dorsey et al [88] have predicted
that, if the normal solid to supersolid transition is of second
order, an anomaly in the specific heat should be observed,
similar to the well known λ-anomaly of superfluid helium 4. To
check this issue, Lin, Clark and Chan looked for a peak in the
temperature variation of the heat capacity of solid helium [50].

They used an ac-calorimetry method at 0.1 Hz to study
solid samples grown at constant volume. In order to improve
the crystal quality, the growth took place over a very long
time (20 h) so that their samples were insensitive to any
further annealing. From the measured total heat capacity, they
subtracted the empty cell contribution (reduced to only one-
tenth of the total thanks to a cell made of pure silicon) and the
T 3 contribution from the phonons in solid helium. Eventually,
the possible contribution from 3He impurities was carefully
analysed in samples with higher impurity concentrations and
found to be negligible for a 1 ppb concentration. The whole
procedure led to a peak in the specific heat, centred around
75 mK (see figure 13). This temperature is the same as the
onset temperature found by Clark et al [49] with ultra-pure,
single crystalline samples. The amplitude of the peak is about
2.0 μJ mol−1 K−1. Given this number and assuming that the
transition is a 3D superfluid transition, the expected superfluid
fraction can be calculated with the Josephson relation [89] and
the two scale factor universality class hypothesis [90, 91]. It
scales as A1/3Tc, where A is the amplitude of the singular part
of the heat capacity per unit volume [92]. Taking for this
quantity the peak height and comparing to liquid helium 4,
Lin et al estimate the supersolid fraction to be about 0.06%,
in agreement with previous NCRIF measurements. Together
with its interpretation, this measurement strongly supports
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Figure 13. Heat capacity measurements by Lin et al [50] of solid
helium 4 samples grown at constant volume and containing different
helium 3 concentrations (see legend). The temperature variation
shows a maximum around 75 mK when contributions from phonons
and from helium 3 impurities are subtracted. The dashed lines
indicate the standard deviation for the 1 ppb data.

the existence of a true phase transition associated with the
anomalies observed in TO experiments.

In their analysis of preliminary heat capacity data [93],
Balatsky et al [94] calculated the entropy near Tc, and argued
that it was an order of magnitude too small when compared
to an estimate based on the entropy Sλ = 4.6 J K−1 mol−1

of helium 4 at Tλ = 1.8 K and high pressure [95]. They
used a scaling argument, taking the entropy at the transition
to be proportional to the transition temperature, and a 1%
supersolid fraction. If we follow their reasoning with the
more recent values from [50], we would expect S(Tc) =
4.6 × 0.075/1.8 × 10−4 = 115 μJ K−1 mol−1, still larger
than the measured 20 μJ K−1 mol−1. However, this scaling
argument is questionable: for superfluid helium 4, Sλ/Tλ is
not constant: it decreases by 11% between the saturated vapour
pressure (where Tc = 2.17 K) and the freezing pressure (where
Tc = 1.76 K) [95]. Furthermore, Balatsky et al [94] proposed
that, in the specific heat, the presence of a term linear in T is the
signature of a glassy component in the solid. The calorimetry
experiment of Lin et al [50] rules out such a term, but it could
exist in more disordered samples. In fact, a linear term that
decreases after annealing was reported by Franck in 1964 [96]
and interpreted as the contribution due to the vibrations of a
dislocation network [97]. It may be that Franck’s samples had
a much larger dislocation density than Lin’s.

Lin et al compared their results with the measurement
of the melting curve Pm(T ) by Todoshchenko et al [98].
Indeed, a superfluid transition should affect the solid entropy
and consequently the shape of the melting curve. However,
after elimination of an artefact due to changes in the elastic
properties of the flexible part of their pressure gauge [99],
Todoshchenko et al found no deviation from the usual T 4 law,
which one expects if both the liquid and the solid entropy are
dominated by phonons. One possible explanation could be
that, being grown at low temperature from the superfluid liquid
and being kept on the melting curve, Todoshchenko’s samples
are single crystals with a very low density of dislocations [66].
In contrast, Lin’s samples, being grown at constant volume

from the normal liquid, are likely to be polycrystals with a large
density of defects (GBs and dislocations), even if they show no
change under annealing: if strongly anchored on walls, defects
do not anneal out. If true, this would be consistent with the
hypothesis that, whatever the exact mechanism, supersolidity
requires the presence of defects.

5. Mechanical effects

5.1. The experiment by Day and Beamish

Since a solid differs from a liquid by the non-zero value of
its elastic shear modulus μ, it appeared important to measure
this quantity in solid helium and to look for a change around
100 mK. This is what Day and Beamish have done with
two different methods [81]. They used a pair of transverse
piezoelectric transducers, parallel to each other, separated by
a thin gap (180 μm) filled with solid helium. In a first
experiment, a quasi-static (20 Hz) voltage is applied to one
transducer and produces a shear strain in the neighbouring
helium. The other transducer measures the stress associated
with this strain, so that μ can be deduced. The same
transducers could be used in a second experiment to excite
an acoustic resonance near 8000 Hz in the whole helium
cell. Usually, an acoustic wave is not purely transverse
because acoustic modes can be purely transverse or purely
longitudinal only in high symmetry crystalline directions. But
any variation of the shear modulus should affect the frequency
of the resonant mode. With both methods, Day and Beamish
have measured a change in μ which is highly reminiscent of
the anomalies observed with TOs (see figure 14).

As T decreases below about 100 mK, μ is found to
increase. The effect is large, typically 10%. It starts around
200 mK (100 mK for ultra-pure samples) and saturates below
about 50 mK (20 mK for ultra-pure samples; see figure 14).
Associated with this change in μ, there is a peak in the
attenuation of sound, which is similar to that of the TO. The
experiments used strains down to 2.2 × 10−9, that is one order
of magnitude smaller than the plasticity threshold found around
2 × 10−8. Day and Beamish have also observed annealing and
hysteresis effects which are reminiscent of the observations by
Aoki et al [60] (see section 6 below). Eventually, the change
in μ was found to be sensitive to small 3He concentrations in
a way similar to the NCRI in TO experiments: the addition
of small amounts of 3He increases the onset temperature
below which μ varies and decreases the amplitude of the
variation. Given this series of similarities between TO and
μ measurements, it is tempting to think that the two types
of anomalies have a common physical origin. However, if it
exists, this common origin is not yet clear.

5.2. Interpretation and relation to other experiments

Day and Beamish have proposed an interpretation of
their measurements in terms of 3He impurities binding to
dislocations with a binding energy E3 = 0.6 K. This is
the value that had been measured by Iwasa [78, 79] from
sound velocity and sound attenuation measurements. Paalanen
et al [80] had found a similar value E3 = 0.7 K. Note that
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Figure 14. The temperature variation of the shear modulus μ as measured by Day and Beamish [81] (filled symbols). For comparison, Day
and Beamish have also plotted the NCRIF measurements by Kim and Chan [10] (open circles on the right, 300 ppb) and by Clark et al [49]
(open squares on the left, 1 ppb). Data have been normalized to the value at 18 mK in order to make the comparison clearer (see [81]). As
indicated in ppb, the three sets of data correspond to different concentrations in 3He.

Paalanen et al used a TO method similar to Chan’s, except
that their oscillator was reduced to a small rod (0.4 mm inner
diameter, 1 mm outer diameter) with no cell around, solid
helium only inside the rod. Paalanen’s TO had a resonance
frequency of 331 Hz. He used strain levels larger than 10−7,
which are, in principle and according to Day and Beamish,
well above the plasticity threshold. He measured changes in
μ which were much larger than those of Day and Beamish
and it would be interesting to see if this discrepancy is to
be attributed to the larger strain amplitude. In order to find
E3 = 0.7 K, he used hypotheses similar to those of Day and
Beamish, based on the Granato–Lücke theory [87]. In this
common model, helium crystals contain a certain density of
dislocations which form a network with nodes. The typical
distance between two nodes is L. It is also the average distance
between dislocations. A dislocation line can resonate like a
string of length L at a frequency which depends on L and on
the energy per unit length—or line tension—of the dislocation.
At resonance, an acoustic wave propagating through the whole
system is attenuated. Depending on frequency, the dislocation
line moves with the wave or not. Since the mobility of a
dislocation depends on temperature, a change in sound velocity
should be observed as samples are cooled down, and this is
what Iwasa on the one hand and Paalanen on the other hand
have indeed measured.

Before considering the interpretation given by Day and
Beamish in more detail, we wish to mention the work
by Goodkind, who observed changes in the velocity and
attenuation of sound in solid helium, which might also be
related to changes in dislocation mobility, although Goodkind
et al interpreted them in terms of BEC above a critical
temperature of order 200 mK [100, 101]. In another
experiment, Mukharsky et al used a flexible membrane
to excite and detect sound resonances in a solid helium
sample [102]. They found resonances around 500 Hz, which
shifted down in frequency as T was lowered below 100 mK in
some samples. These effects were sensitive to annealing and a
study as a function of the drive amplitude showed non-linear

effects which might be analogous to those observed in TO
experiments. These resonances are much too low in frequency
to correspond to acoustic modes and their nature needs to be
explained. As for acoustic modes, Mukharsky et al observed
them at much higher frequencies (17–32 kHz), which increased
as T decreased. This temperature variation is reminiscent of
the stiffening observed by Day and Beamish.

Day and Beamish suppose that 3He impurities bind to
dislocations below a temperature which depends on both the
dislocation density and the 3He binding energy. Suppose
further that, once bound, 3He atoms pin the dislocation motion.
If the distance between bound 3He atoms is smaller than L, the
distance between two nodes which are also supposed to pin
the dislocations because they do not slide, then the adsorption
of 3He reduces the dislocation motion. The final result should
be an increase of the effective μ because moving dislocations
provide some strain, which is suppressed if the dislocations
are pinned. This model and the corresponding explanation
of the measurements by Day and Beamish are very physical
and sound very likely, but one should notice that they rely
on two hypotheses which would need to be checked, namely
that nodes in the dislocation network do not move and that
3He atoms pin the dislocations instead of moving with them.
Effects associated with a change in the mobility of dislocations
have also been considered by de Gennes [103].

5.3. Comparison with TO experiments

A difficulty appears when comparing with TO measurements.
Indeed, one could expect that, when a solid becomes
superfluid, it becomes more fluid, meaning that its shear
modulus decreases, while Day and Beamish have found that
it increases. Could it be that the change in TO period comes
from an increase in the elastic constant G of equation (1), more
than from a decrease in the inertia I ? Given the very small
contribution of the helium elasticity to G, which is dominated
by the metal box and rod, this possibility looks surprising
but not impossible [20, 81]. Biroli and Bouchaud propose
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that a superfluid transition is associated with a proliferation
of dislocation lines. They expect a solid sample with more
dislocations to be stiffer, just like a polymer tangle with a larger
polymer density. They further explain that 3He could have
two opposite effects: it could reduce the superfluid density
since 3He atoms are Fermi particles which add to the normal
component as well documented in the case of superfluid liquid
helium 4. But it could also increase the number of quenched-in
dislocations or even change the energy of kink–antikink pairs
on dislocations, which would have the opposite effect.

Let us finally note that Dorsey et al [88] had predicted that
superfluidity and elasticity should be coupled in a supersolid,
so that there should be a singularity in the temperature variation
of elastic moduli similar to that of the specific heat. However,
what is observed by Day and Beamish is a step, not a peak, in
the temperature variation of the shear modulus, and the effect
is much larger in amplitude than the broad peak observed by
Lin et al [50] for the specific heat.

6. Additional remarks and questions

6.1. Analogy with quantum gases in optical lattices

Supersolidity has also been studied with quantum gases of
cold atoms in optical lattices (see e.g. [104–108]). There are
analogies and fundamental differences between real crystals
and such periodic systems. An optical lattice is a structure
made with interfering laser beams, in which the light intensity
is periodic in space. When a gas of cold atoms is introduced, it
interacts with the light and the optical lattice acts as a external
periodic potential. The atom–atom interaction is repulsive at
short range, that is on each lattice site, with an energy U .
There is a kinetic energy J due to tunnelling from site to site,
which can be tuned by varying the amplitude of the interfering
laser beams. This system is a realization of the ‘Hubbard
model’ [108]. For Bose atoms, it undergoes a transition from a
localized state called a ‘Mott insulator’ when the ratio U/J is
large to a delocalized Bose-condensed state when it is small. In
other words, the system becomes superfluid if there is enough
exchange between atoms.

Greiner et al [104] observed this transition with an average
density in the range 1–3 atoms per site. They found a transition
around U/J = 36. Their result is consistent with the mean
field calculation of a transition at 5.8z, where z is the number
of nearest neighbours (z = 6 in a simple cubic lattice) [108].
In reality, the transition is highly sensitive to the filling factor
of the lattice n, with singularities at each integer value of n.
The commensurate system with n = 1 is always localized
for weak exchange (U/J > 5.8z) and always superfluid
for strong exchange (U/J < 5.8z). But for infinitesimal
deviations from commensurability (n = 1 ± ε) the system is
not fully localized: it contains a small density of ‘particles’
or ‘holes’, that is interstitials or vacancies in the language of
crystals, whose superfluid transition temperature depends on
their density. In the limit where ε tends to zero, the superfluid
transition temperature goes to zero as well.

Compared to real crystals, quantum gases in optical
lattices have several peculiarities. First of all, the filling of sites

with atoms can be adjusted independently of the amplitude
of the lattice potential, which is due to the laser beams, not
to atom–atom interactions. Second, the trapping needs a
wide quadratic potential to be superimposed on the optical
lattice, so that the density cannot be homogeneous in the
whole system. As a result, what is seen when the transition
to a Mott insulator occurs is the appearance of concentric
domains with filling factors equal to 1, 2, 3 etc. Despite this
difficulty, the experiments by Fölling et al [105] clearly show
that commensurability favours localization.

It is not simple to extrapolate such results to the physics of
real quantum crystals. One faces the same questions as already
mentioned in the introduction: is the crystal commensurate?
If yes, is the ratio U/J sufficiently small for superfluidity
to occur? If not, what is ε, the density of vacancies?
Let us consider helium 4 crystals and suppose that they are
commensurate. One is tempted to take the activation energy
of a vacancy–interstitial pair as an order of magnitude for the
interaction energy U . We have seen above that the vacancy
energy is approximately 10 K, the interstitial energy is about
20 K and we could take 10 K as an order of magnitude for
U . The tunnelling frequency depends exponentially on the
height of an energy barrier, which might be of the same order
of magnitude. In the case of helium 3 crystals, where the
quantum kinetic energy is larger than in helium 4, there is an
antiferromagnetic state below 1 mK [109], which is the typical
magnitude for the exchange energy. If the exchange energy in
helium 4 is at most 1 mK, then it seems to us that helium 4
crystals are far inside the localized state region because U/J is
very large.

If helium 4 crystals are incommensurate, it does not seem
likely that the vacancy density can be large enough to explain
a superfluid transition around 100 mK [34].

6.2. Hysteresis and critical velocity

Aoki et al have studied the NCRIF of the same solid sample
at two different frequencies [60]. They use a clever design
for the TO, with two masses (one without helium, and one
with a cylindrical solid helium sample inside). This system has
two resonant modes: at f1 = 495.8 Hz when the two masses
move in phase, and at f2 = 1172.8 Hz when they move 180◦
out of phase. NCRI is observed, with usual features: T0 �
150 mK and a NCRIF of 0.1%. Below 35 mK, the NCRIF
is independent of temperature and frequency; above 35 mK,
the low frequency mode at f1 shows a lower NCRIF (around
half that at f2) and a narrower dissipation peak, 4 mK lower
than that for f2. Aoki et al have also added two interesting
pieces of information. First, the dependence of the NCRIF
on oscillation amplitude described in section 2 had previously
been ascribed to the existence of a critical velocity, by analogy
with superfluid helium. However, one may wonder if there is
rather a critical displacement or acceleration. In particular, for
a rim velocity around 10 μm s−1 and a frequency of 1 kHz,
the rim displacement is only 1.6 nm. Aoki et al have found
that the same curve is obtained for the two modes when the
NCRIF is plotted against velocity, and not when plotted against
displacement or acceleration, confirming the interpretation
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Figure 15. Hysteresis effects as observed by Aoki et al [60] at 19 mK (left graph) but not at 63 mK (right graph).

involving a critical velocity. Another important finding is
the existence of hysteresis (see figure 15). When the TO is
cooled to low enough temperature, e.g. 19 mK, at low velocity
near 10 μm s−1, and the oscillation amplitude then increased,
the NCRIF remains constant up to 800 μm s−1 instead of
vanishing; if this is a transient effect, its time constant for
decay is estimated to exceed 100 h. If the TO is oscillated
at any velocity below 610 μm s−1 at 300 mK before cooling
to 19 mK, the velocity dependence of the NCRIF shows a
large hysteresis: when the velocity decreases, the NCRIF
increases and saturates below 15 μm s−1; from this situation,
if the velocity is increased, the NCRIF remains constant up
to 800 μm s−1. The two modes exhibit the same behaviour.
On the other hand, there is no hysteresis at high enough
temperature; the transition between the two regimes is around
40 mK. The observed history dependence is analogous to the
effects of ‘zero field’ or ‘field’ cooling in superconductors and
magnetic materials [110].

Similar results have been obtained by Clark, Maynard and
Chan [20], whose systematic study shows the existence of
many metastable NCRIF available to the system. A precise
interpretation remains to be made, probably in terms of vortex
pinning, or in terms of the dynamics of a vortex tangle [82],
or 3He impurity pinning either on vortices or on dislocations.
It should be eventually noticed that Clark’s study [20] shows
that, for some samples, the NCRIF keeps increasing down to
velocities of order 1 μm s−1, which correspond to less than
one circulation quantum. This is an obvious difficulty in the
vortex scenario. Finally, possible effects of a dc rotation on the
measured NCRIF have not yet been observed with a rotating
cryostat, despite the efforts by Penzev et al [58].

6.3. Dissipation peak

Instead of a supersolid interpretation of the NCRI effect,
Nussinov et al [111] propose that the observed period drop
is a natural consequence of the associated dissipation peak:
the connection is made in the frame of linear response theory,
using the Kramers–Krönig relations. As for the origin of
the dissipation peak, they propose that a small liquid-like

component transforms into a glass at low temperature; the
dissipation reaches a maximum when the equilibration time s
of this component becomes the inverse of the TO pulsation.
Nussinov et al are able to give an overall satisfactory fit
of the data from Rittner and Reppy [57]: they set several
adjustable parameters to reproduce the dissipation peak, and
then need one more to explain the temperature dependence
of the resonant period. However, Aoki et al [60] note
that their measurements at two different frequencies (see
section 6.2) cannot be both reproduced with the simple form
s = s0 exp[�/(kBT )].

In an analysis of the relation between the dissipation peak
amplitude and the period shift, Huse and Khandker [112]
concluded that most samples must be inhomogeneous so
that the dissipation peak is broader than it should be in a
homogeneous sample.

6.4. X-ray and neutron scattering

As mentioned in section 3.2, the neutron scattering
measurements by Blackburn et al [48] show no measurable
variation of the lattice parameter in the temperature range
0.14–0.8 K, in agreement with the existence of a large
activation energy Evac for vacancies. The neutron scattering
measurements by Adams et al [113] showed no variation
of the lattice parameter either, but in a smaller temperature
domain (0.07–0.4 K). Both experiments have looked for a
possible effect of a superfluid transition on the mean square
displacement or kinetic energy of atoms in their hcp lattice.
No variation was found as a function of temperature. In the
experiment by Diallo et al [114], neutron scattering was used
to look for the existence of a condensate in solid helium, but
the result was n0 = (−0.10 ± 1.20)%. If the anomalies seen
in TO experiments are due to a superfluid transition, it has to
be associated with defects which are either not present or not
visible in these neutron scattering experiments.

Mulders and his group tried to measure the lattice
parameter in a much larger temperature range than Fraass et al
[45] using x-ray diffraction. He reported [115] difficulties in
making this measurement. He observed large fluctuations in
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the mosaic of polycrystalline helium samples and measured all
types of temperature variations of the lattice parameter from
one sample to another. According to him, the reproducibility of
Fraass’ results is questionable. We hope that this problem can
be solved in the near future. A new experimental determination
of the activation energy of vacancies would certainly be
useful. We finally note that Ye [116] has calculated a phase
diagram for the supersolid phase and predicted that signatures
of supersolidity should be observable in x-ray measurements.
However, he has taken an equilibrium line for a spinodal line
when considering that the roton gap energy vanishes at the
melting pressure Pm, and this is incorrect: the roton gap is non-
zero at the melting pressure [121].

6.5. Phase coherence and macroscopic flow

As mentioned in section 2, the evidence for a macroscopic
phase coherence in solid helium samples is a little weak.
One needs to repeat the experiment of Kim and Chan [10]
with blocked and unblocked cells having the same thickness,
diameter and height. One also needs to vary the ratio of their
thickness to their diameter and compare the ratio of NCRIF to
the calculations by Fetter [19] and Mueller [21] of irrotational
flow in an annular geometry. If a poor agreement is found with
theory, one needs to consider mechanical explanations since
the presence of a barrier across the annulus should change the
stress field applied to the sample. This is a very important test
for many theories which assume macroscopic phase coherence.

Furthermore, there is no strong evidence yet that a dc mass
superflow can exist through solid helium at low temperature.
We note that Josserand, Pomeau and Rica [117] developed a
model based on the Gross–Pitaevskii equation which shows
NCRI but apparently no dc superflow. Coming back to
experiments, Sasaki’s experiment [55] needs to be improved
in order to demonstrate the existence of dc superflow along
grain boundaries (see section 4.2). On the other hand, pressure
gauges apparently work with a good accuracy if the solid
sample geometry is sufficiently open. There must be a
crossover in size for mass flow to take place, and possibly also
conditions on stress gradients or pinning of defects on walls.
All these effects should be explored further.

Finally, there is no experimental evidence of phase
coherence along dislocation lines and the predictions by
Boninsegni et al [83] also call for experimental checks.

6.6. Pressure dependence

As shown in figure 4 and briefly mentioned in section 2,
Kim and Chan [25] have measured a non-monotonic pressure
dependence of the NCRIF in samples grown at constant
volume. From the melting pressure Pm = 25 bar to about
55 bar, the NCRIF increases and it decreases then up to the
highest pressure at which it was measured (135 bar). Since
it is generally accepted that the activation energy of vacancies
Evac is an increasing function of P , and since energy barriers
involved in tunnelling from site to site are likely to be also
increasing with P , Kim’s results are puzzling. One possible
interpretation is that crystals grown at constant volume and
at high pressure have a larger density of dislocations or grain

boundaries. As for the decrease at even larger pressure, if one
assumes that the TO anomalies are related somehow to the
superfluidity of dislocations or grain boundaries, it could be
due to this superfluidity vanishing at high pressure. It is well
known that the superfluid transition temperature Tλ decreases
with P because the roton minimum, which is a sign of local
order in the liquid, also decreases. It has been predicted
that superfluidity should disappear in metastable liquid helium
when the roton energy goes to zero. The calculation by Vranjes
et al [121] shows that this gap is not yet zero but strongly
reduced at 300 bar. The possible vanishing of superfluidity at
high pressure is currently under study [33, 118–122]. It is also
possible that, as P increases, the dynamics of dislocation lines
or grain boundaries slows down. The pressure dependence of
measured quantities is obviously an important check for any
model.

6.7. Hydrogen

At an early stage in their series of experiments, Chan and
his group reported preliminary results on solid molecular
hydrogen (H2). They had observed a decrease in period, similar
to the one in helium, although smaller in amplitude [123, 124].
However, a control experiment with a cell blocked by a barrier
showed the same effect. Chan et al concluded that hydrogen
was apparently not supersolid and that the period change could
have another explanation, perhaps associated with ortho–para
conversion [125] and the corresponding phase transition. It
would be interesting to clarify the origin of the effect in
hydrogen.

7. Perspectives

As announced in the introduction, we believe that the whole
issue of supersolidity is not yet understood. Helium crystals
show a series of intriguing properties whose existence is firmly
established but which still need a clear interpretation. From
the theoretical side, a lot of progress has been made in the last
few years but there remain controversies on some fundamental
questions and, more importantly, none of the existing models
seem to be able to make quantitative predictions for all the
observed properties. A particularly important challenge is
to describe the non-classical rotation properties of torsional
oscillators and the change in elastic properties observed by
Day and Beamish in a unified and quantitative model. For this
one needs to better understand interactions between vacancies,
fluctuations and mobility of dislocations and grain boundary,
the nature and dynamics of nodes in networks of dislocations or
grain boundaries and also 3He adsorption on all these defects.
In a comment about Day’s experiments, Huse and Dorsey [126]
consider the possibility that the changes in elastic properties
could be the primary effect with superfluidity a side effect and,
once more, this needs to be further checked.

Now that the importance of disorder has been recognized,
one needs to make measurements on helium samples with
known disorder. The quenched samples of Rittner and Reppy
on the one hand, and the single crystals grown by Clark et al
on the other hand, obviously have a different disorder and their
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properties do not necessarily need to be described within the
same model. The Vycor data fall very far away from all other
data on the graph drawn by Rittner and Reppy (figure 4) and
this supports the idea that the associated mechanism is different
from the one in bulk samples. The measurement of densities
of dislocations or grain boundaries is a challenge in itself.
Moreover, it would need to be combined with high sensitivity
measurements of specific heat, torsional oscillator properties,
elastic moduli, mass flow etc.

As we have noted, the evidence for the existence of a
macroscopic coherence in solid helium samples is weak and
we hope that this crucial point is carefully studied with various
shapes of blocked and unblocked cells in the near future. One
would also like to obtain strong experimental evidence that
grain boundaries are superfluid as predicted, also the core of
dislocations. The mobility of these objects is an interesting
problem in itself, as well as the energy and dynamics of nodes
in dislocation networks, contact lines of grain boundary, 3He
adsorption and mobility on these defects. Experiments in
hydrogen and its isotopes might be useful to repeat as well.

There must be many other questions to solve, both
experimental and theoretical ones, and we apologize for having
certainly not mentioned all of the ideas on supersolidity which
have been published yet. In fact, we would be very interested in
discovering new ideas or questions on this fascinating subject.
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